Математическое развитие дошкольников

Логико-математическое развитие дошкольников

Детская деятельность, насыщенная проблемными ситуациями, творческими задачами, играми и игровыми упражнениями, ситуациями поиска с элементами экспериментирования и практического исследования, схематизацией при условии использования математического содержания, является по своей сути логико-математической.

Сегодня логико-математические игры конструируются с учётом современного взгляда на пропедевтику у детей 4 – 7 лет математических способностей. К важнейшим из них относят:

- оперирование образами, установление связей и зависимостей, фиксирование их графически;

- представление возможных изменений объектов и предвидение результата;

- изменение ситуации, осуществление преобразования;

- активные результативные действия как в практическом, так и в идеальном плане.

Современные логико-математические игры стимулируют настойчивое стремление ребёнка получить результат (собрать, соединить, измерить, проявив при этом познавательную инициативу и творческие способности. Они помогают развивать внимание, память, речь, воображение и мышление, создают положительную эмоциональную атмосферу, побуждают детей к общению, коллективному поиску, проявлению активности в преобразовании игровой ситуации.

С позиций идей педагогики развития организация логико-математических игр предусматривает интеграцию познавательного, деятельностно-практического и эмоционально-ценностного развития детей. Познавательное развитие осуществляется в процессе освоения детьми как средств познания (сенсорные эталоны, схемы и модели, образы объектов, речь, так и способов познания (сравнение, уравнивание, моделирование, комбинирование, счёт. Измерение, классификация, сериация и др.) .

В процессе логико-математических игр допустимы свободное взаимодействие и общение ребёнка со взрослыми и сверстниками, что создаёт условия для проявления активности и самореализации личности ребёнка в деятельности.

Кроме этого, логико-математической игре свойственна познавательная и игровая мотивация, которая вносит оживление, стимулирует выбор ребёнком необходимых практических и умственных результативных действий, способствуют развитию мышления и речи. Взрослый вызывает интерес к игре и поддерживает его, не подавляя инициативу ребёнка.

Однако в практике логико-математические игры во всём своём многообразии не нашли должного применения. Чаще всего они используются бессистемно. Основные причины этого явления, вероятно, состоят в следующем:

- воспитатели недооценивают значимость логико-математических игр в развитии у детей математических представлений и в успешном переходе к логическому мышлению (после 5 – 6 лет) ;

- педагоги недостаточно владеют игровыми методами логико-математического развития дошкольников;

- в играх, игровых обучающих ситуациях зачастую детская самостоятельность и активность заменяется собственной инициативностью воспитателя; ребёнок в игре становится исполнителем указаний, предписаний взрослого, а не субъектом обучающей игровой деятельности (он не деятель, не творец, не открыватель, не мыслитель) .

Правомерно требуют решения вопросы:

- систематизации логико-математического содержания в соответствии с возрастными возможностями детей;

- раскрытия разнообразия способов поддержки ребёнка в логико-математической деятельности;

- совершенствования педагогической компетентности педагогов.

Непременным условием эффективности логико-математической деятельности является привлечение детей к анализу свойств и отношений, зависимостей и закономерностей через разнообразные действия и приёмы.

Дидактические пособия для логико-математического развития детей дошкольного возраста.

Важнейшими дидактическими пособиями логико-математического развития дошкольников являются:

- логические блоки Дьеныша и комплект логических геометрических фигур, изготовленных по типу блоков;

- цветные счётные палочки Кюизенера и их плоский аналог – разноцветные полоски;

- наглядно-дидактические пособия для игр с блоками и палочками.

Проблемно-игровые методы логико-математического развития дошкольников.

Логико-математическое развитие детей невозможно осуществить вне исключения их в проблемную, исследовательскую деятельность, экспериментирование, моделирование, поэтому педагогам предлагается проблемно-игровые методы.

Проблемно-игровые методы обеспечивают активный, осознанный поиск способа достижения результата. Непременным условием такого поиска являются принятые ребёнком цели деятельности и самостоятельные размышления по поводу действий, ведущих к результату.

Проблемно-игровые методы логико-математического развития детей дошкольного возраста реализуются с использованием разнообразных средств.

Средства реализации проблемно-игровых методов логико-математического развития:

- логические и математические игры («Кубики для всех», «Логика и цифры», «Играем в математику», «Логическая мозаика», «Геоконт», «Логоформочки», «Шнур-затейник», «Прозрачный квадрат» и др.) ;

- проблемные ситуации, задачи вопросы;

- творческие ситуации, задачи, вопросы;

- экспериментирование и исследовательская деятельность;

- логико-математические сюжетные игры.

Цель использования проблемно-игровых методов – развитие у детей познавательной активности, интеллектуально-творческих способностей. Проблемно-игровые методы успешно реализуются при условии:

- последовательного и целенаправленного выдвижения познавательных задач;

- обеспечения детской активности в поиске решения;

- стимулирования детской самодеятельности.

Логические и математические игры:

«Сложи квадрат» Цель: развитие цветоощущения, усвоение соотношения целого и части, формирование логического мышления и умения развивать сложную задачу на несколько простых.

«Найди и назови» Цель: закрепить умение быстро находить геометрическую фигуру определённого размера и цвета.

«Только одно свойство» Цель: закрепить знания свойств геометрических фигур, развивать умение быстро выбрать нужную фигуру и охарактеризовать её.

«Составление геометрических фигур» Цель: упражнять в составлении геометрических фигур на плоскости стола, анализе и обследовании их зрительно-осязаемым способом.

Материал: счётные палочки.

Задания:

- составь квадрат и треугольник маленького размера;

- составь маленький и большой квадрат и т. д.

Проблемная ситуация в условиях применения проблемно-игрового метода рассматривается не только как средство активизации мышления, но и как средство овладения исследовательскими действиями, умением формулировать собственные мысли (предположения) о способах поиска и результате. Одно из основных назначений проблемной ситуации – способность развитию творческих способностей ребёнка.

Структура проблемной ситуации включает проблемные вопросы, способствующие осмыслению сущности выполняемого действия, развитию сообразительности.

Взрослый может, например, задать такой вопрос: «Как распределить все блоки по трём обручам (отдельно расположенным в пространстве? » Дети предлагают варианты ответов (рассортировать блоки по цвету, по форме, по размеру). Каждое предложение обсуждается, принимается или отрицается.

В проблемные ситуации для детей включаются занимательные вопросы, занимательные задачи, задачи-шутки (и другие виды нестандартного математического материала, поиск ответов к которым протекает активно, с опорой на наглядность. Например, на столе лежат две красные палочки, между ними чёрная. Педагог задаёт вопрос: «Что нужно сделать для того, чтобы чёрная палочка стала крайней, не трогая её? »

Не длительное экспериментирование, включенное в проблемную ситуацию, становится одним из средств разрешения проблемы, обогащения её; усиливает практическую направленность. К примеру, детям из 5 палочек (розовой, красной, сиреневой, бордовой и оранжевой) нужно составить лесенку. Сначала они высказывают свои предположения о вариантах построения лесенки (односторонняя со ступенями справа, односторонняя со ступени слева, двусторонняя со ступенями слева и справа и др.)

Проблемная ситуация разрешается поэтапно:

1) осознание и принятие проблемы;

2) высказывание детьми предположений;

3) практическая проверка предположений;

4) обоснование рационального способа решения проблемной задачи.

Для сюжетной логико-математической игры, специально сконструированной для детей, характерны игровая направленность деятельности; насыщение проблемными ситуациями, творческими задачами; наличий ситуаций поиска с элементами экспериментирования, практического исследования, схематизацией. Обязательным требованием к данным играм является их развивающее воздействие (обеспечение мер, во время постройки «дома» (игра «Логический домик») ребёнок, делая очередной ход, ориентируется на связи между предметами, нарисованными на «кирпичиках» (главном строительном материале). Это могут быть связи сходства или отличия по окраске, форме, назначению, принадлежности. Соблюдения этажности строительства и требований к размеру дома предусматривает установление количественных отношений (математических связей) .

Методическое обеспечение:

З. Н. Михайлова, Е. А. Носова

Логико-математическое развитие дошкольников: игры с логическими блоками Дьеныша и цветными палочками Кюизенера. – СПб. : ООО «ИЗДАТЕЛЬСТВО «ДЕТСТВО-ПРЕСС», 2013.

З. А. Михайлова

Игровые задачи для дошкольников. – СПб ДЕТСТВО-ПРЕСС, 2008.

З. А. Михайлова

Игровые занимательные задачи для дошкольников. – М. : Просвещение, 1981.

Е. А. Носова, Р. Л. Непомнящая

Логика и математика для дошкольников: методическое пособие. – СПб. : Акцидент, 1996; СПб. : ДЕТСТВО-ПРЕСС, 2008.

А. А. Смоленцева, О. В. Суворова

Математика в проблемных ситуациях для маленьких детей. – СПб, : ДЕТСТВО-ПРЕСС, 2008.

А. А. Смоленцева А. А., О. В. Пустовойт

- Н. Новгород: Нижегородский гуманитарный центр, 1996. Давайте вместе поиграем: Методические советы по использованию дидактических игр с блоками и логическими фигурами / Сост. : Н. О. Лелявина, Б. Б. Финкельштейн. СПб. : Корвет, 2001.

Е. С. Ермакова, И. Б. Румянцева, И. И. Целищева

Развитие гибкости мышления детей. Дошкольный и младший дошкольный возраст. Учебное пособие. – СПб. : Речь, 2007.

www.maam.ru

Математическое развитие дошкольников в условиях образовательной системы - Страница 5

МАТЕМАТИЧЕСКОЕ РАЗВИТИЕ ДОШКОЛЬНИКОВ В УСЛОВИЯХ ВАРИАТИВНОСТИ ОБРАЗОВАТЕЛЬНОЙ СИСТЕМЫ И РЕАЛИЗАЦИИ ИДЕЙ РАЗВИВАЮЩЕГО ОБРАЗОВАНИЯ

Математическое развитие детей в конкретном образовательном учреждении (детский сад, группы развития, группы дополнительного образования, прогимназия и т. д.) проектируется на основе концепции дошкольного учреждения, целей и задач развития детей, данных диагностики, прогнозируемых результатов.

Концепцией определяется соотношение предматематического и предлогического компонентовв содержании образования. От этого соотношения зависят прогнозируемые результаты: развитие интеллектуальных способностей детей, их логического, творческого или критического мышления; формирование представлений о числах, вычислительных или комбинаторных навыках, способах преобразования объектов и т. д.

Ориентировка в современных программах развития и воспитания детей в детском саду, изучение их дает основание для выбора методики. В современные программы («Развитие», «Радуга», «Детство», «Истоки» и др.) , как правило, включается то логико-математическое содержание, освоение которого способствует развитию познавательно-творческих и интеллектуальных способностей детей.

Эти программы реализуются через деятельностные личностно-ориентированные развивающие технологиии исключают «дискретное» обучение, т.е. раздельное формирование знаний и умений с последующим закреплением.

Для современных программ математического развития детей характерноследующее.

Направленность осваиваемого детьми математического содержания на развитие их познавательно-творческих способностейи в аспекте приобщения к человеческой культуре.

Дети осваивают разнообразие геометрических форм, количественных, пространственно-временных отношений объектов окружающего их мира во взаимосвязи.

Овладевают способами самостоятельного познания: сравнением, измерением, преобразованием, счетом и др. Это создает условия для их социализации, вхождения в мир человеческой культуры.

•Обучение детей строится на основе включения активных форм и методов и реализуется как на специально организованных занятиях (через развивающие и игровые ситуации) , так и в самостоятельной и совместной деятельности со взрослыми (в играх, экспериментировании, игровых тренингах, упражнениях в рабочих тетрадях, учебно-игровых книгах и т. д.) .

•Используются те технологии развития математических представлений у детей, которые реализуют воспитательную, развивающую направленность обучения и «прежде всего активность обучающегося». Это технологии поисково-исследовательской деятельности и экспериментирования, познания и оценки ребенком величин, множеств, пространства и времени на основе выделения отношений, зависимостей и закономерностей. В силу этого современные технологии определяются как проблемно-игровые.

• Развитие детей зависит от созданных педагогических условий и психологической комфортности, при которых обеспечивается единство познавательно-творческого и личностного развития ребенка.

Необходимо стимулирование проявлений субъектности ребенка (самостоятельности, инициативности, творческих начал, рефлексии) в играх, упражнениях, игровых обучающих ситуациях. Важнейшее условие развития прежде всего заключается в организации обогащенной предметно-игровой среды (эффективные развивающие игры, учебно-игровые пособия и материалы) и положительном взаимодействии между взрослыми и воспитанниками.

• Развитие и воспитание детей, их продвижение в познании математического содержания проектируется через освоение средств и способов познания.

•Проектирование и конструирование процесса развития математических представлений осуществляется на диагностической основе

Стимулирование познавательного, деятельностно-практического и эмоционально-ценностного развития на математическом содержании способствует накоплению детьми логико-математического опыта. Этот опыт является основой для свободного включения ребенка в предметную, игровую, исследовательскую деятельность: самопознание, разрешение проблемных ситуаций; решение творческих задач и их реконструирование и т. д.

Достоянием субъектного опыта ребенка становятся ориентировка в свойствах и отношениях объектов, зависимостях; умение воспринимать одно и то же явление, действие с разных позиций. Когнитивное развитие ребенка становится более совершенным.

Под математическим развитием дошкольников следует понимать позитивные изменения в познавательной сфере личности, которые происходят в результате освоения математических представлений и связанных с ними логических операций.

Современное состояние теории и методики развития математических представлений у детей дошкольного возраста сложилось под влиянием следующих взглядов

Авторы теории классической системы сенсорного воспитания Ф Фребель, М. Монтессори и др.

- Создание среды, благоприятной для развития.

- Внимание к интеллектуальному развитию ребенка.

- Создание систем наглядных материалов.

- Разработка приемов развития у детей количественных, геометрических и других представлений

Педагоги –методисты Е. И. Тихоева, Л. В Глаголева Ф. Н . Блехер и др.

- Создание обстановки для успешного развития и воспитания детей.

- Разработка игровых методов обучения и подходов к их реализации.

- Конструирование содержания обучения в детском саду и подготовительных классах (в виде уроков) .

Психологи 80-90-х Гт. XX в. П. Я. Гальперин В. В. , Давыдов Н. И. Непомнящая и др.

-Выяснение возможностей интенсификации и оптимизации обучения детей.

- Освоение начальных математических представлений через предметные действия уравнивания и измерения. Наглядное моделирование в процессе решения арифметических задач.

- Обогащение содержания обучения и развития (связи и зависимости, логические операции и т.д.) .

Ученый-исследователь А. М. Леушина (исследования 1956 г.)

- Теоретическое обоснование до-числового периода обучения детей и периода развития числовых представлений.

- Методика развития количественных и числовых представлений у детей.

- Обучение на занятиях — основной путь освоения содержания. Деление материалов на демонстрационные и раздаточные.

- Целенаправленное формирование элементарных математических представлений у детей

Авторы концепции дошкольного воспитания: В. В. Давыдов, В. А. Петровский и др.

-Реализация идей личностно-ориентированного подхода к развитию и воспитанию детей

-Организация совместной с ребенком деятельности развивающей направленности, самостоятельной и организованной в специально созданной предметно-игровой среде.

-Активизация детской деятельности: использование проблемных ситуаций, элементов РТВ (развитие творческого воображения) , моделирования и других путей развития мыслительной деятельности детей

Концепция содержания непрерывного образования (дошкольное и начальное звено, 2000)

-Содержание математических представлений отнесено к познавательно-речевому направлению в развитии ребенка-дошкольника.

- Недопустимость изучения в детском саду элементов программы первого класса и «формирования у детей узкопредметных знаний и умений».

-Основы математического развития состоят в обучении умению выделять признаки, сравнивать и упорядочивать, сосчитывать и присчитывать, ориентироваться в пространстве и во времени.

Читать далее otveti-examen.ru

Статья « Математическое развитие дошкольника ».

В теории и методике термин « Метод» употребляется в двух смыслах: широком и узком. Метод может обозначать исторически сложившийся подход к математической подготовке детей в детском саду (монографический, вычислительный и метод взаимообразных действий) . В педагогических системах И. Г. Песталоцци, Ф. Фребеля, М. Монтессори и др.обосновывается необходимость математического развития детей, а в связи с этим выдвигаются цели о совершенствовании методов их обучения При выборе методов учитываются:

-Цели, задачи обучения; -содержание формируемых знаний на данном этапе; -возраст и индивидуальные особенности детей; -наличие необходимых дидактических средств; -личное отношение к тем или иным методам; -конкретные условия, в которых протекает процесс обучения и др.

Теория и практика обучения накопила определенный опыт использования разных методов обучения в работе с детьми дошкольного возраста.

В практику работы детских садов проникли монографический метод А. В. Грубе и вычислительный метод ( изучения действий ) . Практические методы характеризуются, прежде всего, самостоятельным выполнением действий, применением дидактического материала. Наглядные и словесные методы не являются самостоятельными, но это не умаляет их значения в математическом развитии детей. Часто на одном занятии используются разные методы в разном их сочетании. Составные части метода - методические приёмы, основные из них: – накладывание и прикладывание, - сравнение и обследование, - дидактические игры, - указания и вопросы…

Показ- этот прием является демонстрацией и может характеризоваться

как метод ( формирование знаний, умений и навыков - младший возраст) и

как прием: «Кто быстрее?», «Наведи порядок».

Особое место в методике - вопросы к детям (конкретные, лаконичные, точные) .

Большое значение в старшем возрасте в обучении детей имеют проблемные ситуации.

Дидактическая игра может быть использована, как метод и как приём

наглядно - практически – действенный.

С помощью игры формируются, уточняются и закрепляются представления детей о последовательных числах, об отношении между ними, о составе каждого из чисел, знание цифр, представления о геометрических фигурах, временные и пространственные представления.

Игры способствуют развитию наблюдательности, внимания, памяти, мышления, речи. Одна и та же игра усложняется по мере усложнения программного содержания. Дидактическая игра должна сохранять занимательный характер, благодаря чему повышается работоспособность детей на занятии.

Многие игры предполагают двигательную активность детей, что позволяет использовать их вместо физкультурной - минутки.

Успешность усвоения математических представлений в процессе игры зависит от правильного руководства воспитателем.

Темп, продолжительность игры, оценка детских ответов, реакция

на ошибки детей, правильное использование математических терминов контролируются и направляются педагогом.

Для формирования пространственных и временных представлений ведущими методами являются дидактические игры и упражнения (Т. Д. Рихтерман, О. А. Фунтикова) и др. Разработана идея простейшей логической подготовки дошкольников на основе использования специальной серии «практикующих игр» (А. А. Столяр, Б. П. Никитин) .

Дидактические игры:

Цель игры: закрепление представлений о количественных отношениях между последовательными числами, упражнение в счете.

Материал: цифры, куб с цифрами, карточки (с предметами) .

2. «Кто знает – пусть дальше считает»

Цель: усвоение порядка следования натурального ряда чисел, упражнение в прямом и обратном счете, развитие внимания, памяти.

Материал: мяч.

Организация: круг или полукруг, в центре воспитатель с мячом . Перед началом игры воспитатель договаривается с детьми, в каком порядке (прямом или обратном) они будут считать.

Ход игры:

Воспитатель бросает мяч ребенку и называет число, поймавший должен считать дальше. Игра проводится в быстром темпе и повторяется столько раз, сколько необходимо по количеству детей. Задания, предлагаемые детям, определяются их знаниями и умениями в момент игры.

3. «Ручеек»

Цель:закрепление знаний о составе числа из двух меньших чисел в пределах 10

Материал: цифры от 1-9

Ход игры:

Ведущие берутся за руки, образуя воротца ( в руках любая цифра) . Дети с цифрами разбегаются по комнате. По сигналу «ручеек, в воротца!» дети должны разбиться на пары, образовав вместе заданное число. «Ручеек» должен пройти через воротца.

4. «Путаница»

Обеспечить всестороннюю математическую подготовку детей удаётся при умелом сочетании игровых методов и методов прямого обучения. Игра увлекает, не перегружает. Постепенный переход от интереса к игре, к интересу к учению совершенно естественен.

По теме:

Ссылка на источник nsportal.ru

Задачи математического развития дошкольников - Страница 6

Страница 6 из 25

Задачи математического развития дошкольников

Малыши постигают то содержание математической направленности, которое в современной методике развития математических представлений детей дошкольного возраста именуется предматематикой.Это содержание обеспечивает развитие мышления, освоение логико-математических представлений и способов познания.

Содержание предматематикинаправлено на развитие важнейших составляющих личности ребенка — его интеллекта и интеллектуально-творческих способностей.

Результатами освоения предматематики являются не только знания, представления и элементарные понятия, но и общее развитие познавательных процессов. Способности к абстрагированию, анализу, сравнению, обобщению, сериации и классификации, умение сравнивать предметы и явления, выяснять закономерности, обобщать, конкретизировать и упорядочивать являются важнейшей составляющей логико-математического опыта ребенка, который дает ему возможность самостоятельно познавать мир.

Освоенные математические представления, логико-математические средства и способы познания (эталоны, модели, речь, сравнение и др.) составляют первоначальный логико-математический опыт ребенка. Этот опыт является началом познания окружающей действительности, первым вхождением в мир математики.

Целью и результатом педагогического содействия математическому развитию детейдошкольного возраста является развитие интеллектуально-творческих способностей детей через освоение ими логико-математических представлений и способов познания.

Задачи математического развития в дошкольном детствеопределены с учетом закономерностей развития познавательных процессов и способностей детей дошкольного возраста, особенностей становления познавательной деятельности и развития личности ребенка в дошкольном детстве. Выполнение этих задач должно обеспечивать реализацию принципа преемственности в развитии и воспитании ребенка на дошкольной и начальной школьной ступенях образования.

Основными задачами математического развития детей дошкольного возрастаявляются:

- развитие у детей логико-математических представлений (представлений о математических свойствах и отношениях предметов, конкретных величинах, числах, геометрических фигурах, зависимостях и закономерностях) ;

- развитие сенсорных (предметно-действенных) способов познания математических свойств и отношений: обследование, сопоставление, группировка, упорядочение, разбиение;

- освоение детьми экспериментально-исследовательских способов познания математического содержания (воссоздание, экспериментирование, моделирование, трансформация) ;

- развитие у детей логических способов познания математических свойств и отношений (анализ, абстрагирование, отрицание, сравнение, обобщение, классификация, сериация) ';

- овладение детьми математическими способами познания действительности: счет, измерение, простейшие вычисления;

- развитие интеллектуально-творческих проявлений детей: находчивости, смекалки, догадки, сообразительности, стремления к поиску нестандартных решений задач;

- развитие точной, аргументированной и доказательной речи, обогащение словаря ребенка;

- развитие активности и инициативности детей;

- воспитание готовности к обучению в школе: развитие самостоятельности, ответственности, настойчивости в преодолении трудностей, координации движений глаз и мелкой моторики рук, умений самоконтроля и самооценки.

Содержание математического развития детей дошкольного возраста определяется, наряду с целями и задачами, следующими важными факторами.

Личностно-развивающая направленность содержания математического развития дошкольников должна являться эффективным средством развития интеллектуально-творческих способностей ребенка и содействовать развитию важнейшего личностного качества — самостоятельностив решении интеллектуальных задач.

Направленность математического содержания, которое осваивает ребенок в дошкольном возрасте, является социализирующей.Накопленный логико-математический опыт ребенка обязательно станет его значимым личностным приобретением, если обеспечит ситуацию успеха в разных видах деятельности, требующих проявления интеллектуально-творческих способностей.

Содержание математического развития дошкольников пропедевтично. Осваиваемое ребенком содержание должно позволить ему на чувственном, а затем и логическом уровне познать некоторые стороны действительности и развить те структуры мышления, на основе которых впоследствии будут формироваться основные математические понятия.

Осваиваемое содержание должно соответствовать возрастным и индивидуальным возможностямдошкольников, быть ориентированным на зону их ближайшего развития.

Материал otveti-examen.ru

Современные концепции и методические системы математического развития дошкольников - Страница 4

Страница 4 из 25

Современные концепции и методические системы математического развития дошкольников, вариативные программы "Радуга", "Развитие", "Детство", методические системы М. Монтессори, Н. А. Зайцева, Е. К. Шулешко, Н. В. Белошистой.

Современное состояние теории и технологии развития математических представлений у детей дошкольного возраста сложилось в 80—90-е гг. XX вв. и первые годы нового столетия под влиянием развития идей обучения детей математике, а также реорганизации всей системыобразования.

Уже в 80-е гг. начали обсуждаться пути совершенствования как содержания, так и методов обучения детей дошкольного возраста математике.

В качестве негативного момента отмечалась ориентировка на выработку у детей предметных действий, в основном связанных со счетом и простейшими вычислениями, без должного уровня их обобщенности. Такой подход не обеспечивал подготовку к усвоению математических понятий в дальнейшем обучении.

Специалисты выясняли возможности интенсификации и оптимизации обучения, способствующие общему и математическому развитию ребенка, отмечали необходимость повышения теоретического уровня осваиваемых детьми знаний. Это требовало реконструкции программы обучения, в том числе переосмысления системы представлений, последовательности их формирования.

Начались интенсивные поиски путей обогащения содержания обучения. Решение этих сложных проблем осуществлялось по-разному.

Психологи в качестве основания для формирования начальных математических представлений и понятий предлагали различные предметные действия.

П. Я. Гальперин разработал линию формирования начальных математических понятий и действий, построенную на введении мерки и определении единицы через отношение к мерке. Число при таком подходе воспринимается ребенком как результат измерения, как отношение измеряемой величины к избранной мерке. На основе этих и других исследований в программу обучения детей была включена тема «Освоение величин».

В исследовании В. В. Давыдова был раскрыт психологический механизм счета как умственной деятельности и намечены пути формирования понятия числа через освоение детьми действий уравнивания, комплектования и измерения.Генезис понятия числа рассматривался на основе кратного отношения любой величины (непрерывной и дискретной) к ее части.

В отличие от традиционной методики ознакомления с числом (число — результат счета) новым явился способ введения самого понятия: число как отношение измеряемой величины к единице измерения (условная мерка) , т. е. число — результат измерения.

Анализ содержания обучения дошкольников с точки зрения новых задач привел исследователей к выводу о необходимости учить детей обобщенным способам решения познавательных задач, усвоению связей, зависимостей, отношений и логических операций(классификации и сериации) .

Для этого предлагались и своеобразные средства: модели, схематические рисунки и изображения, отражающие наиболее существенное в познаваемом содержании.

Математики-методисты (А. И. Маркушевич, Ж. Папи и др.) настаивали на значительном пересмотре содержания знаний для детей 6-летнего возраста, насыщении его некоторыми новыми представлениями, относящимися к множествам, комбинаторике, графам, вероятности и т. д.

Идеи простейшей предлогической подготовки дошкольников разрабатывались в Могилевском педагогическом институте под руководством А. А. Столяра. Методика введения детей в мир логико-математических представлений — свойства, отношения, множества, операции над множествами, логические операции(отрицание, конъюнкция, дизъюнкция) — осуществлялась с помощью специальной серии обучающих игр.

В педагогических исследованиях выяснялись возможности развития у детей представлений о величине, установления взаимосвязей между счетом и измерением; апробировались приемы обучения (Р. Л. Березина, Н. Г. Белоус, 3. Е. Лебедева, Р. Л. Непомнящая, Е. В. Проскура, Л. А. Левинова, Т. В. Тарунтаева, Е. И. Щербакова) .

Возможности формирования количественных представлений у детей раннего возрастаи пути их совершенствования у детей дошкольного возраста изучены В. В. Даниловой, Л. И. Ермолаевой, Е. А. Тархановой.

Содержание и приемы освоения пространственно-временных отношенийопределены на основе исследований Т. А. Мусейибовой, К. В. Назаренко, Т. Д. Рихтерман и др.

Методы и приемы математического развития детей с помощью игрыбыли разработаны З. А. Грачевой (Михайловой) , Т. Н. Игнатовой, А. А. Смоленцевой, И. И. Щербининой и др.

Исследовались возможности использования наглядного моделированияв процессе обучения решению арифметических задач (Н. И. Непомнящая) , познания детьми количественных и функциональных зависимостей (Л. Н. Бондаренко, Р. Л. Непомнящая, А. И. Кириллова) , способности дошкольников к наглядному моделированию при освоении пространственных отношений (Р. И. Говорова, О. М. Дьяченко, Т. В. Лаврентьева, Л. М. Хализева) .

Комплексный подход в обучении, эффективные дидактические средства, обогащенное содержание и разнообразные приемы обучения нашли отражение в конспектах занятийпо формированию математических представлений и методических рекомендациях по их использованию, разработанных Л. С. Метлиной.

Поиск путей совершенствования методики обучения математике детей дошкольного возраста осуществлялся и в других странах.

В начале 90-х гг. XX в. наметилось несколько основных научных направленийв теории и методике развития математических представлений у детей дошкольного возраста.

Согласно первому направлению, содержание обучения и развития, методы и приемы конструировались на основе идеи преимущественного развития у детей дошкольного возраста интеллектуально-творческих способностей(Ж. Пиаже, Д. Б. Эльконин, В. В. Давыдов, Н. Н. Поддьяков, А. А. Столяр и др.) :

- наблюдательность, познавательные интересы;

- исследовательский подход к явлениям и объектам окружения (умения устанавливать связи, выявлять зависимости, делать выводы) ;

- умение сравнивать, классифицировать, обобщать;

- прогнозирование изменений в деятельности и результатах;

- ясное и точное выражение мысли;

- осуществление действия в виде «умственного эксперимента» (В. В. Давыдов и др.) .

Предполагались активные методы и приемы обучения и развития детей, такие как моделирование, действия трансформации(перемещение, удаление и возвращение, комбинирование) , игра и другие.

Способность к наглядному моделированию выступает как одна из общих интеллектуальных способностей. Дети овладевают действиями с тремя видами моделей (модельных представлений) : конкретными; обобщенными, отражающими общую структуру класса объектов; условно-символическими, передающими скрытые от непосредственного восприятия связи и отношения.

Второе положение базировалось на преимущественном развитии у детей сенсорных процессов и способностей(А. В. Запорожец, Л. А. Венгер, Н. Б. Венгер и др.) :

- включение ребенка в активный процесс по выделению свойств объектов путем обследования, сравнения, результативного практического действия;

- самостоятельное и осознанное использование сенсорных эталонов и эталонов мер в деятельности использование моделирования («прочтения» моделей и действий моделирования) .

- При этом овладение перцептивными ориентировочными действиями, которые ведут к усвоению сенсорных эталонов, рассматривается как основа развития у детей сенсорных способностей.

Третье теоретическое положение, на котором базируется математическое развитие детей дошкольного возраста, основано на идеях первоначального (до освоения чисел) овладения детьми способами практического сравнения величин через выделение в предметах общих признаков— массы, длины, ширины, высоты (П. Я. Гальперин, Л. С. Георгиев, В. В. Давыдов, Г. А. Корнеева, А. М. Леушина и др.) . Эта деятельность обеспечивает освоение отношений равенства и неравенства путем сопоставления.

Дети овладевают практическими способами выявления отношений по величине, для которых числа не требуются. Числа осваиваются вслед за упражнениями при сравнении величин путем измерения.

Четвертое теоретическое положение основывается на идее становления и развития определенного стиля мышления в процессе освоения детьми свойств и отношений(А. А. Столяр, Р. Ф. Соболевский, Т. М. Чеботаревская, Е. А. Носова и др.) .

Умственные действия со свойствами и отношениями рассматриваются как доступное и эффективное средство развития интеллектуально-творческих способностей. В процессе действий с множествами предметов, обладающих разнообразными свойствами (цветом, формой, размером, толщиной и пр.) , дети упражняются в абстрагировании свойств и выполнении логических операций над свойствами тех или иных подмножеств. Специально сконструированные игры помогают детям понять точный смысл логических связок и, или, если, то, смысл слов не, все, некоторые.

Теоретические основы современной методики развития математических представлений базируются на интеграции четырех основных положений, а также на классических и современных идеяхматематического развития детей дошкольного возраста.

Подробней otveti-examen.ru

Другие статьи по теме:

  • Филиппова физическое воспитание и развитие дошкольников

    «Физическое воспитание в детском саду» СОДЕРЖАНИЕ Основы образования и воспитания дошкольников в области физической культуры. 1.1 Место физического воспитания детей дошкольного возраста в общей с...

  • Развитие элементарных математических представлений у дошкольников

    Пути формирования элементарных математических представлений у дошкольников «Пути формирования элементарных математических представлений у дошкольников! » Развитие элементарных математических пред...

  • Формы работы по математическому развитию дошкольников

    Проект по математическому развитию дошкольников «Круг, квадрат и треугольник — подружись с ними, дошкольник» Номинация проекта - «Дошкольный возраст». Вид проекта: долгосрочный, фронтальный. Учас...

  • Логико математическое развитие дошкольников

    «Логико-математическое развитие детей дошкольного возраста» (педагогический проект) Информационная характеристика педагогического проекта Автор проекта: Яманаева Н. А., воспитатель МДОУ №5 «Ромаш...

  • Формы организации математического развития дошкольников

    Статья «Организация самостоятельной деятельности детей дошкольного возраста в процессе развития математических представлений» Проблема математического развития детей дошкольного возраста в настоя...

  • Познавательное развитие дошкольников по фгос

    Консультация «Познавательное развитие в соответствии с ФГОС ДО» для воспитателей детского сада Совсем недавно в нашем коллективе была организована консультация "Познавательное развитие в соответс...

  • Развития младших дошкольников в дидактических играх

    Роль дидактических игр в развитии дошкольника Консультация на тему: «Роль дидактических игр в развитии дошкольника». Совсем недавно я услышала притчу: «Я пытался достичь сердца ребенка словами, н...

  • Логико математическое развитие дошкольников михайлова носова скачать

    Логико-математические игры в работе с дошкольниками Каждый дошкольник - маленький исследователь. Задача воспитателей и родителей – помочь ему сохранить и развить стремление к познанию, удовлетвор...

  • Диагностика математического развития детей дошкольного возраста

    «Логико-математическое развитие детей дошкольного возраста» (педагогический проект) Информационная характеристика педагогического проекта Автор проекта: Яманаева Н. А., воспитатель МДОУ №5 «Ромаш...

  • Проблемно игровые методы логико математического развития дошкольников

    «Логико-математическое развитие детей дошкольного возраста» (педагогический проект) Информационная характеристика педагогического проекта Автор проекта: Яманаева Н. А., воспитатель МДОУ №5 «Ромаш...

  • Элементарные математические представления у дошкольников

    Использование игровых приемов на занятиях по формированию элементарных математических представлений у дошкольников Доклад на тему: Использование ИГРОВЫХ ПРИЕМОВ на занятии по ФОРМИРОВАНИю ЭЛЕМЕНТ...

  • Методы физического развития дошкольников

    «Физическое воспитание в детском саду» СОДЕРЖАНИЕ Основы образования и воспитания дошкольников в области физической культуры. 1.1 Место физического воспитания детей дошкольного возраста в общей с...

  • Михайлова носова логико математическое развитие дошкольников

    «Логико-математическое развитие детей дошкольного возраста» (педагогический проект) Информационная характеристика педагогического проекта Автор проекта: Яманаева Н. А., воспитатель МДОУ №5 «Ромаш...

  • Программы по математическому развитию детей дошкольного возраста

    «Логико-математическое развитие детей дошкольного возраста» (педагогический проект) Информационная характеристика педагогического проекта Автор проекта: Яманаева Н. А., воспитатель МДОУ №5 «Ромаш...